
EnergyPlus™ Version 8.7 Documentation

External Interface(s) Application
Guide

U.S. Department of Energy

September 30, 2016

COPYRIGHT (c) 1996-2016 THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLI-
NOIS AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA THROUGH THE
ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY. ALL RIGHTS
RESERVED. NO PART OF THIS MATERIAL MAY BE REPRODUCED OR TRANSMITTED
IN ANY FORM OR BY ANY MEANS WITHOUT THE PRIOR WRITTEN PERMISSION OF
THE UNIVERSITY OF ILLINOIS OR THE ERNEST ORLANDO LAWRENCE BERKELEY
NATIONAL LABORATORY. ENERGYPLUS IS A TRADEMARK OF THE US DEPARTMENT
OF ENERGY.

Contents

1 External Interface(s) 3
1.1 Introduction . 3
1.2 Coupling EnergyPlus with the Building Controls Virtual Test Bed 3

1.2.1 Algorithm for data exchange . 3
1.3 BCVTB Examples . 4

1.3.1 Architecture of System . 4
1.3.2 XML Syntax . 6
1.3.3 Example 1: Interface using ExternalInterface:Schedule 8
1.3.4 Example 2: Interface using ExternalInterface:Actuator 11
1.3.5 Example 3: Interface using ExternalInterface:Variable 13

1.4 Coupling EnergyPlus with Functional Mock-up Units for co-simulation . . . 16
1.4.1 Data exchange between EnergyPlus and FMUs 17
1.4.2 Case 1: Linking two systems through differential variables 19
1.4.3 Case 2: Linking two systems through algebraic and differential variables 20
1.4.4 Requirements . 20

1.5 FMU Examples . 21
1.5.1 Architecture of the FMU for co-simulation Import 21
1.5.2 Workflow of the FMU for co-simulation import 22
1.5.3 FMU Parser . 22
1.5.4 Example 1: Interface using ExternalInterface:FunctionalMockupUnitImport:To:Schedule 23
1.5.5 Example 2: Interface using ExternalInterface:FunctionalMockupUnitImport:To:Actuator 27
1.5.6 Example 3: Interface using ExternalInterface:FunctionalMockupUnitImport:To:Variable 28

1.6 Exporting EnergyPlus as a Functional Mock-up Unit for co-simulation . . . 30

2 References 31

2

Chapter 1

External Interface(s)

1.1 Introduction
The ExternalInterface allows coupling EnergyPlus to the Building Controls Virtual Test Bed
(BCVTB). It supports the import of Functional Mock-up Units (FMUs) for co-simulation
as well as the export of EnergyPlus as a FMU for co-simulation. BCVTB is a software
environment that allows expert users to couple different simulation programs for distributed
simulation or for a real-time simulation that is connected to a building control system.
For example, the BCVTB allows simulation of the building envelope and HVAC system
in EnergyPlus and the control logic in MATLAB/Simulink, while exchanging data be-
tween the two programs as they simulate. The BCVTB can be downloaded from http:
//simulationresearch.lbl.gov/bcvtb. A FMU is a component which implements the Func-
tional Mock-up Interface (FMI) standard (http://www.modelisar.com).

1.2 Coupling EnergyPlus with the Building Controls
Virtual Test Bed

1.2.1 Algorithm for data exchange
The process in which at least two simulators solve initial-value differential equations that
are coupled to each other is called co-simulation. Various algorithms are possible for the
data exchange. In the BCVTB, data are exchanged between its client programs, including
EnergyPlus, using a fixed synchronization time step. There is no iteration between the
clients. In the co-simulation literature, this coupling scheme is referred to as quasi-dynamic
coupling, loose coupling or ping-pong coupling (Hensen 1999, Zhai and Chen 2005).

The algorithm for exchanging data is as follows: Suppose we have a system with two
clients, with client 1 being EnergyPlus and client 2 being, for example, the Simulink program
from Mathworks. Suppose each client solves an initial-value ordinary differential equation
that is coupled to the differential equation of the other client. Let N ∈ N denote the number
of time steps and let k ∈ {1, ..., N} denote the time steps. We will use the subscripts 1 and
2 to denote the state variable and the function that computes the next state variable of the
simulator 1 and 2, respectively.

3

http://simulationresearch.lbl.gov/bcvtb
http://simulationresearch.lbl.gov/bcvtb
http://www.modelisar.com

4 CHAPTER 1. EXTERNAL INTERFACE(S)

The simulator 1 computes, for k ∈ {1, ..., N − 1} the sequence
x1(k+1) = f1(x1(k), x2(k))
and, similarly, the simulator 2 computes the sequence
x2(k+1) = f2(x2(k), x1(k))
with initial conditions x1(0) = x1,0 and x2(0) = x2,0.
To advance from time k to k+1, each simulator uses its own time integration algorithm.

At the end of the time step, the simulator 1 sends the new state x1(k+1) to the BCVTB
and it receives the state x2(k+1) from the BCVTB. The same procedure is done with the
simulator 2. The BCVTB synchronizes the data in such a way that it does not matter which
of the two simulators is called first.

In comparison to numerical methods of differential equations, this scheme is identical to
an explicit Euler integration, which is an integration algorithm that computes for an ordinary
differential equation with specified initial values,

dx/dt = h(x),
x(0) = x0,
on the time interval t � [0, 1], the following sequence:

Step 0: Initialize counter k=0 and number of steps N ∈ N.
Set initial state x(k) = x and set time step Dt = 1/N.

Step 1: Compute new state x(k+1) = x(k) + h(x(k)) Dt.
Replace k by k+1.

Step 2: If k=N stop, else go to Step 1.

In the situation where the differential equation is solved using co-simulation, the above
algorithm becomes

Step 0: Initialize counter k=0 and number of steps N ∈ N .
Set initial state x (k) = x and x (k) = x . Set the time step Dt
= 1/N.

Step 1: Compute new states x (k+1) = x (k) + f (x (k), x (k)) Dt, and
x (k+1) = x (k) + f (x (k), x (k)) Dt.
Replace k by k+1.

Step 2: If k=N stop, else go to Step 1.

This algorithm is implemented in the BCVTB. Note that there is no iteration between
the two simulators.

1.3 BCVTB Examples
1.3.1 Architecture of System
The figure below shows the architecture of the connection between EnergyPlus and the
BCVTB. The black objects are explained in this application guide, whereas the grey items

1.3. BCVTB EXAMPLES 5

are not specific to EnergyPlus and are explained in the BCVTB documentation. The BCVTB
connects to the external interface in EnergyPlus. In the external interface, the input/output
signals that are exchanged between the BCVTB and EnergyPlus are mapped to EnergyPlus
objects. The subject of this External Interface Application Guide is how to configure this
mapping and how to use these objects. For a detailed explanation of the grey items, we refer
to the BCVTB documentation.

Figure 1.1: Architecture of the BCVTB with the EnergyPlus client (black) and other clients
(grey).

The external interface can map to three EnergyPlus input objects called ExternalIn-
terface:Schedule, ExternalInterface:Actuator and ExternalInterface:Variable. The External-
Interface:Schedule can be used to overwrite schedules, and the other two objects can be
used in place of Energy Management System (EMS) actuators and EMS variables. The
objects have similar functionality as the objects Schedule:Compact, EnergyManagementSys-
tem:Actuator and EnergyManagementSystem:GlobalVariable, except that their numerical
value is obtained from the external interface at the beginning of each zone time step, and
will remain constant during this zone time step.

Compared to EnergyManagementSystem:Actuator, the object ExternalInterface:Actuator
has an optional field called “initial value.” If a value is specified for this field, then this
value will be used during the warm-up period and the system sizing. If unspecified, then the
numerical value for this object will only be used during the time stepping. Since actuators
always overwrite other objects (such as a schedule), all these objects have values that are
defined during the warm-up and the system sizing even if no initial value is specified. For the
objects ExternalInterface:Schedule and ExternalInterface:Variable, the field “initial value”
is required, and its value will be used during the warm-up period and the system-sizing.

ExternalInterface:Variable is a global variable from the point of view of the EMS lan-
guage. Thus, it can be used within any EnergyManagementSystem:Program in the same way
as an EnergyManagementSystem:GlobalVariable or an EnergyManagementSystem:Sensor
can be used.

Although variables of type ExternalInterface:Variable can be assigned to EnergyManag-
mentSystem:Actuator objects, for convenience, there is also an object called ExternalInter-

6 CHAPTER 1. EXTERNAL INTERFACE(S)

face:Actuator. This object behaves identically to EnergyManagmentSystem:Actuator, with
the following exceptions:

• Its value is assigned by the external interface.

• Its value is fixed during the zone time step because this is the synchronization time
step for the external interface.

The external interface can also map to the EnergyPlus objects Output:Variable and
EnergyManagementSystem:OutputVariable. These objects can be used to send data from
EnergyPlus to the BCVTB at each zone time step.

We will now present examples that use all of these objects. The following table shows
which EnergyPlus features are used in the examples, which are all distributed with the
BCVTB installation that can be obtained from the LBNL web site. Note – these examples
are NOT distributed with EnergyPlus installation because you need the special software to
make them work.

Table 1.3: Overview of the EnergyPlus objects used in
Examples

Example 1 Example 2 Example 3

ExternalInterface:Schedule x
ExternalInterface:Actuator X
ExternalInterface:Variable x
Output:Variable x X x
EnergyManagementSystem:OutputVariable x

To configure the data exchange, the following three steps are required from the user:
1) Create an EnergyPlus idf file.
2) Create an xml file that defines the mapping between EnergyPlus and BCVTB vari-

ables.
3) Create a Ptolemy model.
These steps are described in the examples below. Prior to discussing the examples, we will

explain the syntax of the xml configuration file that defines how data are mapped between
the external interface and EnergyPlus.

1.3.2 XML Syntax
This section describes the syntax of the xml file that configures the data mapping between
EnergyPlus and the external interface.

The data mapping between EnergyPlus and the external interface is defined in an xml
file called variables.cfg. This file needs to be in the same directory as the EnergyPlus idf file.

The file has the following header:
<?xml version = “1.0” encoding = “ISO-8859-1”?>

1.3. BCVTB EXAMPLES 7

<!DOCTYPE BCVTB-variables SYSTEM “variables.dtd”>
Following the header is an element of the form
<BCVTB-variables>
</BCVTB-variables>
This element will contain child elements that define the variable mapping. In between

the element tags, a user needs to specify how the exchanged data is mapped to EnergyPlus
objects. Hence, the order of these elements matter, and it need to be the same as the
order of the elements in the input and output signal vector of the BCVTB actor that calls
EnergyPlus. The exchanged variables are declared in elements that are called “variable”
and have an attribute “source.” As described above, the external interface can send data
to ExternalInterface:Schedule, ExternalInterface:Actuator, ExternalInterface:Variable. For
these objects, the “source” attribute needs to be set to “Ptolemy,” because they are computed
in Ptolemy. The xml elements for these objects look as follows:

For ExternalInterface:Schedule, use
<variable source = “Ptolemy”>

<EnergyPlus schedule = “NAME”/>
</variable>

where NAME needs to be the EnergyPlus schedule name. For ExternalInter-
face:Actuator, use

<variable source = “Ptolemy”>
<EnergyPlus actuator = “NAME” />

</variable>
where NAME needs to be the EnergyPlus actuator name. For ExternalInterface:Variable,

use
<variable source = “Ptolemy”>
<EnergyPlus variable = “NAME”/>

</variable>
where NAME needs to be the EnergyPlus Energy Runtime Language (Erl) variable name.
The external interface can also read data from any Output:Variable and EnergyManage-

mentSystem:OutputVariable. For these objects, set the “source” attribute to “EnergyPlus,”
because they are computed by EnergyPlus. The read an Output:Variable, use

<variable source = “EnergyPlus”>
<EnergyPlus name = “NAME” type = “TYPE”/>

</variable>
where NAME needs to be the EnergyPlus “Variable Name” (such as ZONE/SYS AIR

TEMP) and TYPE needs to be the EnergyPlus “Key Value” (such as ZONE ONE). To read
an EnergyManagementSystem:OutputVariable, use

<variable source = “EnergyPlus”>
<EnergyPlus name = “EMS” type = “TYPE”/>

</variable>
i.e., the attribute “name” must be EMS, and the attribute “type” must be set to the

EMS variable name.
Complete examples of these xml files are presented below.

8 CHAPTER 1. EXTERNAL INTERFACE(S)

1.3.3 Example 1: Interface using ExternalInterface:Schedule
In this example, a controller that is implemented in the BCVTB computes the room tem-
perature set points for cooling and heating. The example can be found in the BCVTB
distribution in the folder examples/ePlusX-schedule, where X stands for the EnergyPlus
version number.

Suppose we need to send from the BCVTB to EnergyPlus a schedule value, and from En-
ergyPlus to the BCVTB an output variable at each zone time step. This can be accomplished
by using an object of type ExternalInterface:Schedule and an object of type Output:Variable.

To interface EnergyPlus using the EMS feature, the following three items are needed:

• An object that instructs EnergyPlus to activate the external interface.

• EnergyPlus objects that write data from the external interface to the EMS.

• A configuration file to configure the data exchange.

1.3.3.1 Creating the EnergyPlus idf file

The EnergyPlus idf file contains the following objects to activate and use the external inter-
face:

• An object that instructs EnergyPlus to activate the external interface.

• An object of type ExternalInterface:Schedule. The external interface will write its
values to these objects at each zone time-step.

• Objects of type Output:Variable. Any EnergyPlus output variable can be read by the
external interface.

The code below shows how to declare these objects.
To activate the external interface, we use:

ExternalInterface, !- Object to activate the external interface
PtolemyServer; !- Name of external interface

To enter schedules to which the external interface writes, we use:

! Cooling schedule. This schedule is set directly by the external interface.
! During warm-up and system-sizing, it is fixed at 24 degC.

ExternalInterface:Schedule,
TSetCoo, !- Name
Temperature, !- ScheduleType
24; !- Initial value, used during warm-up

! Heating schedule. This schedule is set directly by the external interface.
! During warm-up and system-sizing, it is fixed at 20 degC.

ExternalInterface:Schedule,
TSetHea, !- Name
Temperature, !- ScheduleType
20; !- Initial value, used during warm-up

1.3. BCVTB EXAMPLES 9

These schedules can be used as other EnergyPlus schedules. In this example, they are
used to change a thermostat setpoint:

ThermostatSetpoint:DualSetpoint,
DualSetPoint, !- Name
BCVTB-SP-TH, !- Heating Setpoint Temperature Schedule Name
BCVTB-SP-TC; !- Cooling Setpoint Temperature Schedule Name

We also want to read from EnergyPlus output variables, which we declare as

Output:Variable,
TSetHea, !- Key Value
Schedule Value, !- Variable Name
TimeStep; !- Reporting Frequency

Output:Variable,
TSetCoo, !- Key Value
Schedule Value, !- Variable Name
TimeStep; !- Reporting Frequency

To specify that data should be exchanged every 15 minutes of simulation time, enter in
the idf file the section

Timestep,
4; !- Number of Timesteps per Hour

1.3.3.2 Creating the configuration file

Note that we have not yet specified the order of the elements in the signal vector that is
exchanged between EnergyPlus and the BCVTB. This information is specified in the file
variables.cfg. The file variables.cfg needs to be in the same directory as the EnergyPlus idf
file. For the objects used in the section above, the file looks like

<?xml version = "1.0" encoding = "ISO-8859-1"?>
<!DOCTYPE BCVTB-variables SYSTEM "variables.dtd">
<BCVTB-variables>

<!-- The next two elements send the set points to E+ -->
<variable source = "Ptolemy">

<EnergyPlus schedule = "TSetHea"/>
</variable>
<variable source = "Ptolemy">

<EnergyPlus schedule = "TSetCoo"/>
</variable>
<!-- The next two elements receive the outdoor and zone air temperature from E+ -->
<variable source = "EnergyPlus">
<EnergyPlus name = "ENVIRONMENT" type = "SITE OUTDOOR AIR DRYBULB TEMPERATURE"/>

</variable>
<variable source = "EnergyPlus">

<EnergyPlus name = "ZSF1" type = "ZONE AIR TEMPERATURE"/>
</variable>
<!-- The next two elements receive the schedule value as an output from E+ -->
<variable source = "EnergyPlus">

<EnergyPlus name = "TSetHea" type = "Schedule Value"/>
</variable>
<variable source = "EnergyPlus">

<EnergyPlus name = "TSetCoo" type = "Schedule Value"/>
</variable>

</BCVTB-variables>

10 CHAPTER 1. EXTERNAL INTERFACE(S)

This file specifies that the actor in the BCVTB that calls EnergyPlus has an input vector
with two elements that are computed by Ptolemy (Ptolemy is the name of the software on
which the BCVTB is based) and sent to EnergyPlus, and that it has an output vector with
four elements that are computed by EnergyPlus and sent to Ptolemy. The order of the
elements in each vector is determined by the order in the above XML file. Hence, the input
vector that contains the signals sent to EnergyPlus has elements

TSetHea
TSetCoo

and the output vector that contains values computed by EnergyPlus has elements
Environment (Site Outdoor Air Drybulb Temperature)
ZSF1 (ZONE AIR TEMPERATURE)
TSetHea (Schedule Value)
TSetCoo (Schedule Value)

1.3.3.2.1 Creating the Ptolemy model
To start EnergyPlus from the BCVTB, you will need to create a Ptolemy model.
The model bcvtb/example/ePlus40-schedule/system-windows.xml that is part of the

BCVTB installation and that is shown below may be used as a starting point. (For Mac
and Linux, use the file system.xml.) In this example, the time step is 15 minutes and the
simulation period is four days.

Figure 1.2: System model in the BCVTB.

In this model, the Simulator actor that calls EnergyPlus is configured for Windows as
follows:

1.3. BCVTB EXAMPLES 11

Figure 1.3: Configuration of the Simulator actor that calls EnergyPlus on Windows.

Hence, it calls the file “RunEPlus.bat,” with arguments “EMSWindowShadeControl
USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.” The working directory is the current di-
rectory and the console output is written to the file simulation.log. If EnergyPlus does not
communicate with the BCVTB within 10 seconds, the BCVTB will terminate the connec-
tion. (See http://simulationresearch.lbl.gov/bcvtb for more detailed documentation about
how to configure a BCVTB model that communicates with other programs.)

For Mac OS X and Linux, the configuration is similar:

Figure 1.4: Configuration of the Simulator actor that calls EnergyPlus on Mac OS X and
on Linux.

This completes the configuration.

1.3.4 Example 2: Interface using ExternalInterface:Actuator
In this example, a shading controller with a finite state machine is implemented in the
BCVTB. Inputs to the controller are the outside temperature and the solar radiation that
is incident on the window. The output of the controller is the shading actuation signal.

This example describes how to set up EnergyPlus to exchange data between the BCVTB
and EnergyPlus, using an Energy Management System (EMS) actuator. The example can be
found in the BCVTB distribution in the folder examples/ePlusX-actuator, where X stands
for the EnergyPlus version number.

The object of type ExternalInterface:Actuator behaves identically to EnergyManag-
mentSystem:Actuator, with the following exceptions:

http://simulationresearch.lbl.gov/bcvtb

12 CHAPTER 1. EXTERNAL INTERFACE(S)

• Its value is assigned by the external interface.

• Its value is fixed during the zone time step because this is the synchronization time
step for the external interface.

To interface EnergyPlus using the EMS feature, the following three items are needed:
1) An object that instructs EnergyPlus to activate the external interface.
2) EnergyPlus objects that write data from the external interface to the EMS.
3) A configuration file to configure the data exchange.

1.3.4.1 Creating the EnergyPlus idf file

The code below shows how to set up an EnergyPlus file that uses EnergyManagmentSys-
tem:Actuator. To activate the external interface, we use:

ExternalInterface, !- Object to activate the external interface
PtolemyServer; !- Name of external interface

To declare an actuator that changes the control status of the window with name
“Zn001:Wall001:Win001”, we use:

ExternalInterface:Actuator,
Zn001_Wall001_Win001_Shading_Deploy_Status , !- Name
Zn001:Wall001:Win001, !- Actuated Component Unique Name
Window Shading Control, !- Actuated Component Type
Control Status, !- Actuated Component Control Type
; ! initial value

Thus, the entry is identical with EnergyManagmentSystem:Actuator, except for the ad-
ditional optional field that specifies the initial value. If unspecified, then the actuator will
only be used during the time stepping, but not during the warm-up and the system sizing.
Since actuators always overwrite other objects (such as a schedule), all these objects have
values that are defined during the warm-up and the system sizing even if no initial value is
specified.

We also want to read from EnergyPlus the outdoor temperature, the zone air tempera-
ture, the solar radiation that is incident on the window, and the fraction of time that the
shading is on. Thus, we declare the output variables

Output:Variable,
Environment, !- Key Value
Site Outdoor Air Drybulb Temperature, !- Variable Name
timestep; !- Reporting Frequency

Output:Variable,
*, !- Key Value
Zone Mean Air Temperature, !- Variable Name
timestep; !- Reporting Frequency

Output:Variable,
Zn001:Wall001:Win001, !- Key Value
Surface Outside Face Incident Solar Radiation Rate per Area, !- Var Name
timestep; !- Reporting Frequency

1.3. BCVTB EXAMPLES 13

Output:Variable,
*, !- Key Value
Surface Shading Device Is On Time Fraction, !- Variable Name
timestep; !- Reporting Frequency

To specify that data should be exchanged every 10 minutes of simulation time, we enter
in the idf file the section

Timestep,
6; !- Number of Timesteps per Hour

1.3.4.1.1 Creating the configuration file
Note that we have not yet specified the order of the elements in the signal vector that

is exchanged between EnergyPlus and the BCVTB. This information is specified in the file
variables.cfg. The file variables.cfg needs to be in the same directory as the EnergyPlus idf
file. For the objects used in the section above, the file looks like

<?xml version = "1.0" encoding = "ISO-8859-1"?>
<!DOCTYPE BCVTB-variables SYSTEM "variables.dtd">
<BCVTB-variables>

<variable source = "EnergyPlus">
<EnergyPlus name = "ENVIRONMENT" type = "SITE OUTDOOR AIR DRYBULB TEMPERATURE"/>

</variable>
<variable source = "EnergyPlus">

<EnergyPlus name = "WEST ZONE" type = "Zone Mean Air Temperature"/>
</variable>
<variable source = "EnergyPlus">

<EnergyPlus name = "Zn001:Wall001:Win001" type = "Surface Outside Face Incident Solar
Radiation Rate per Area"/>
</variable>
<variable source = "EnergyPlus">

<EnergyPlus name = "Zn001:Wall001:Win001" type = "Surface Shading Device Is On Time
Fraction"/>
</variable>
<variable source = "Ptolemy">

<EnergyPlus actuator = "Zn001_Wall001_Win001_Shading_Deploy_Status" />
</variable>

</BCVTB-variables>

This file specifies that the actor in the BCVTB that calls EnergyPlus has an input vector
with one element that will be written to the actuator, and that it has an output vector
with four elements that are computed by EnergyPlus and sent to Ptolemy. The order of the
elements in each vector is determined by the order in the above XML file. Hence, the output
vector that contains the signals computed by EnergyPlus has elements

ENVIRONMENT (SITE OUTDOOR AIR DRYBULB TEMPERATURE)
WEST ZONE (Zone Mean Air Temperature)
Zn001:Wall001:Win001 (Surface Outside Face Incident Solar Radiation Rate per Area)
Zn001:Wall001:Win001 (Surface Shading Device Is On Time Fraction)

The configuration of the Ptolemy model is identical to the configuration in Example 1.

1.3.5 Example 3: Interface using ExternalInterface:Variable
This example implements the same controller as the Example 2. However, the interface
with EnergyPlus is done using an external interface variable instead of an external interface

14 CHAPTER 1. EXTERNAL INTERFACE(S)

actuator. In addition, the example uses an EnergyManagementSystem:OutputVariable to
set up data that will be read by the external interface.

Similarly to EnergyManagementSystem:GlobalVariable, an ExternalInterface:Variable
can be used in any EnergyManagementSystem:Program. The subject of this example is
to illustrate how an ExternalInterface:Variable can be set up for use in an EnergyManage-
mentSystem:Program. The example can be found in the BCVTB distribution in the folder
examples/ePlusX-variable, where X stands for the EnergyPlus version number.

To interface EnergyPlus using an external interface variable, the following items are
needed:

• An object that instructs EnergyPlus to activate the external interface.

• EnergyPlus objects that write data from the external interface to the EMS.

• A configuration file to configure the data exchange.

1.3.5.1 Creating the EnergyPlus idf file

To write data from the external interface to an EnergyPlus EMS variable, an EnergyPlus
object of the following entry may be used in the idf file:

ExternalInterface, !- Object to activate the external interface
PtolemyServer; !- Name of external interface

ExternalInterface:Variable,
yShade, !- Name of Erl variable
1; !- Initial value

During the warm-up period and the system-sizing, the variable will be set to its initial
value. Afterwards, the value will be assigned from the external interface at each begin-
ning of a zone time step and kept constant during the zone time step. From the point of
view of the EMS language, ExternalInterface:Variable can be used like any global variable.
Thus, it can be used within any EnergyManagementSystem:Program in the same way as an
EnergyManagementSystem:GlobalVariable or an EnergyManagementSystem:Sensor.

This idf section above activates the external interface and declares a variable with name
yShade that can be used in an Erl program to actuate the shading control of the window
“Zn001:Wall001:Win001” as follows:

! EMS program. The first assignments sets the shading status and converts it into the
! EnergyPlus signal (i.e., replace 1 by 6).
! The second assignment sets yShade to
! an EnergyManagementSystem:OutputVariable
! which will be read by the external interface.

EnergyManagementSystem:Program,
Set_Shade_Control_State , !- Name
Set Shade_Signal = 6*yShade, !- Program Line 1
Set Shade_Signal_01 = yShade+0.1; !- Program Line 2

! Declare an actuator to which the EnergyManagementSystem:Program will write
EnergyManagementSystem:Actuator,

Shade_Signal, !- Name
Zn001:Wall001:Win001, !- Actuated Component Unique Name

1.3. BCVTB EXAMPLES 15

Window Shading Control, !- Actuated Component Type
Control Status; !- Actuated Component Control Type

! Declare a global variable to which the EnergyManagementSystem:Program will write
EnergyManagementSystem:GlobalVariable,

Shade_Signal_01; !- Name of Erl variable

We want to read from EnergyPlus the outdoor temperature, the zone air temperature
and the solar radiation that is incident on the window. Thus, we declare

Output:Variable,
Environment, !- Key Value
Site Outdoor Air Drybulb Temperature, !- Variable Name
timestep; !- Reporting Frequency

Output:Variable,
*, !- Key Value
Zone Mean Air Temperature, !- Variable Name
timestep; !- Reporting Frequency

Output:Variable,
Zn001:Wall001:Win001, !- Key Value
Surface Outside Face Incident Solar Radiation Rate per Area, !- Var Name
timestep; !- Reporting Frequency

In addition, we want to output the variable “Erl Shading Control Status” that has been
set up as

! Declare an output variable. This variable is equal to the shahing signal + 0.1
! It will be reah by the external interface to hemonstrate how to receive variables.

EnergyManagementSystem:OutputVariable,
Erl Shahing Control Status, !- Name
Shahe_Signal_01, !- EMS Variable Name
Averageh, !- Type of Data in Variable
ZoneTimeStep; !- Uphate Frequency

To specify that data should be exchanged every 10 minutes of simulation time, enter in
the idf file the section

Timestep,
6; !- Number of Timesteps per Hour

1.3.5.2 Creating the configuration file

Note that we have not yet specified the order of the elements in the signal vector that is
exchanged between EnergyPlus and the BCVTB. This information is specified in the file
variables.cfg. The file variables.cfg needs to be in the same directory as the EnergyPlus idf
file. For the objects used in the section above, the file looks like

<?xml version = "1.0" encoding = "ISO-8859-1"?>
<!DOCTYPE BCVTB-variables SYSTEM "variables.dtd">
<BCVTB-variables>

<variable source = "Ptolemy">
<EnergyPlus variable = "yShade"/>

</variable>
<variable source = "EnergyPlus">

16 CHAPTER 1. EXTERNAL INTERFACE(S)

<EnergyPlus name = "ENVIRONMENT" type = "SITE OUTDOOR AIR DRYBULB TEMPERATURE"/>
</variable>
<variable source = "EnergyPlus">

<EnergyPlus name = "WEST ZONE" type = "Zone Mean Air Temperature"/>
</variable>
<variable source = "EnergyPlus">

<EnergyPlus name = "Zn001:Wall001:Win001" type = "Surface Outside Face Incident Solar
Radiation Rate per Area"/>
</variable>
<variable source = "EnergyPlus">

<EnergyPlus name = "EMS" type = "Erl Shading Control Status"/>
</variable>

</BCVTB-variables>

This file specifies that the actor in the BCVTB that calls EnergyPlus has an input vector
with one element that will be written to the actuator, and that it has an output vector with
four elements that are computed by EnergyPlus and sent to Ptolemy. The order of the ele-
ments in each vector is determined by the order in the above XML file. Note that the fourth
element has the name “EMS” because it is an EnergyManagementSystem:OutputVariable.
Hence, the output vector that contains the signals computed by EnergyPlus has elements

ENVIRONMENT (SITE OUTDOOR AIR DRYBULB TEMPERATURE)
WEST ZONE (Zone Mean Air Temperature)
Zn001:Wall001:Win001 (Surface Outside Face Incident Solar Radiation Rate per Area)
EMS (Erl Shading Control Status)

The configuration of the Ptolemy model is identical to the configuration in the previous
examples.

1.4 Coupling EnergyPlus with Functional Mock-up
Units for co-simulation

The Functional Mock-up Unit (FMU) for co-simulation import for EnergyPlus allows En-
ergyPlus to conduct co-simulation with various programs that are packaged as FMUs. A
FMU is a component which implements the Functional Mock-up Interface (FMI) standard
(http://www.modelisar.com).

A FMU is distributed in the form of a zip file that may contain physical models, model
descriptions, source code, and executable programs for various platforms. The FMU for
co-simulation import provides EnergyPlus with a standard interface to conduct and control
co-simulation with an arbitrary number of FMUs without any middle-ware, such as the
Building Controls Virtual Test Bed (BCVTB Documentation, 2011).

The FMU for co-simulation import allows coupling of continuous-time and discrete-time
models exported from different simulation programs. In the current implementation, Ener-
gyPlus is implemented as the co-simulation master. It controls the data exchange between
the subsystems and the synchronization of all slave simulation programs.

The FMU for co-simulation import enables the direct link between the EnergyPlus kernel
and other simulation tools. It will make the co-simulation easier to conduct as no middle-
ware is involved. This direct link will decrease run-time by eliminating the transaction
layer. In addition, by separating the co-simulation interface from the EnergyPlus kernel, the
FMU interface is reusable when EnergyPlus is updated. Furthermore, the FMU contains

http://www.modelisar.com

1.4. COUPLING ENERGYPLUS WITH FUNCTIONAL MOCK-UP UNITS FOR CO-SIMULATION17

executable files that have the same interface to EnergyPlus regardless of their original pro-
gramming environment. Some commercial tools allow running their FMU without licensing
requirement.

Notes:
1) The current implementation of FMU for co-simulation is only supported on Windows

and Linux.
2) FMUs must be in a folder to which the user has write access.

1.4.1 Data exchange between EnergyPlus and FMUs
Prior to describing the data exchange between EnergyPlus and FMUs, some definitions and
terminologies used in the remainder of this document will be introduced.

A variable of a system described by a system of differential algebraic equations (DAE)
is defined as differential variable if its derivatives are present in the DAE. A variable of a
system described by a system of DAE is defined as algebraic if its derivatives do not appear
explicitly in the DAE (Fabian et al., 2008).

Figure 1.5: System with two variables that could be either differential or algebraic variables.

Because in subsequent discussions, it will be distinguished between algebraic and dif-
ferential variables, a notation for different system of equations that involve algebraic and
differential variables will be introduced. Let q ∈ N , then

• If x1 and x2 are differential variables, then the system is

F (ẋ1, x1, ẋ2, x2, u, t) = 0 with F: �n x �n x �m x �m x �q x � → �n+m.

• If x1 is a differential variable and x2 is an algebraic variable, then the system is

G (ẋ1, x1, x2, u, t) = 0 with G: �n x �n x �m x �q x � → �n+m.

• If x1 is an algebraic variable and x2 is a differential variable, then the system is

H (x1, ẋ2, x2, u, t) = 0 with H: �n x�m x�m x�q x� →�n+m.

• If x1 is an algebraic variable and x2 is an algebraic variable, then the system is

I (x1, x2, u, t) = 0 with I : �n x�m x�q x� →�n+m.
Figure 1.6 shows a case where a FMU is linked to an EnergyPlus model for co-simulation.

The FMU and EnergyPlus could be linked through differential or algebraic variables.
Table 1.4 shows the different system configurations that are possible.

18 CHAPTER 1. EXTERNAL INTERFACE(S)

Figure 1.6: System with one FMU linked to EnergyPlus.

1.4. COUPLING ENERGYPLUS WITH FUNCTIONAL MOCK-UP UNITS FOR CO-SIMULATION19

• In the first case, the variable x1 and x2 are differential variables in both systems.

• In the second case, the variable x1 is a differential variable and the variable x2 is an
algebraic variable.

• In the third case, the variable x1 is an algebraic variable and the variable x2 is a
differential variable.

• In the fourth case, the variable x1 is an algebraic variable and the variable x2 is an
algebraic variable.

In the current implementation, it will be focused on the first and the second cases since
the third and the fourth cases will constrain the FMU to be solved numerically in the
iteration solver loop of EnergyPlus. This will necessitate the ability of the FMU to reject
time steps (Modelisar, 2010) which is currently not implemented in the EnergyPlus FMU
for co-simulation import. Applications for case 1 and 2 are described in the next sections.

Table 1.4: Use cases with different system configurations

Case EnergyPlus FMU (e.g. from Modelica)

(1) Model1 (Differential variable) Model2 (Differential variable)
(2) Model1 (Differential variable) Model2 (Algebraic variable)
(3) Model1 (Algebraic variable) Model2 (Differential variable)
(4) Model1 (Algebraic variable) Model2 (Algebraic variable)

1.4.2 Case 1: Linking two systems through differential variables
This case could be for an application where a wall with a phase change material (PCM) is
modeled in a FMU and is linked to a room model in EnergyPlus. The room air tempera-
ture is the differential variable in EnergyPlus and the temperature of the wall with PCM is
the differential variable in the FMU. Each system solves a differential equation that is con-
nected to the differential equation of the other system. For simplicity, we assume that y1(.)
= x1(.) and y2(.) = x2(.).The systems are described by the ordinary differential equations

dx1/dt = f1(x1, x2), with x1(0) = x1,0 ,
dx2/dt = f2(x2, x1), with x2(0) = x2,0.
Let N ∈ N denote the number of time steps and let tk with k ∈ {1, ..., N} denote the

time steps. We will use the subscripts 1 and 2 to denote the variables and the functions that
compute the next state variable of the simulator 1 and 2, respectively.

The first system computes, for k ∈ {0, ..., N − 1} and some F̃1 : �n x �m x � x � → �n, the
sequence

x1(tk+1) = F̃1 (x1(tk), x2(tk), tk, tk+1)
and, similarly, the simulator 2 computes for some F̃2 : �m x �n x � x � → �m the sequence
x2(tk+1) = F̃2 (x2(tk), x1(tk), tk, tk+1)

20 CHAPTER 1. EXTERNAL INTERFACE(S)

with initial conditions x1(0) = x1,0 and x2(0) = x2,0. F̃1 and F̃2 *are the functions that
are used to compute the value of the state variables at the new time step

To advance from time tk to tk+1, each system uses its own time integration algorithm.
At the end of the time step, EnergyPlus sends the new state x1(tk+1) to the FMU and it
receives the state x2(tk+1) from the FMU. The same procedure is done with the FMU.

1.4.3 Case 2: Linking two systems through algebraic and differ-
ential variables

This case could be for an application where a fan is modeled in a FMU and is linked to a
room model in EnergyPlus. The room temperature is the differential variable in EnergyPlus
and the pressure difference of the fan is the algebraic variable in the FMU. For simplicity, we
assume that y1(.) = x1(.) and y2(.) = x2(.). In this application, the systems are described
by the following equations

dx1/dt = g1(x1, x2), with x1(0) = x1,0,
0 = g2(x2, x1).
Let N ∈ N denote the number of time steps and let tk with k ∈ {1, ..., N} denote the

time steps. We use the same subscripts 1 and 2 as for the first case to denote the variable
and the function that computes the next variable of the simulator 1 and 2, respectively.

The first system computes, for k ∈ {0, ..., N − 1} and some G̃1 : �n x �m x � x � → �n, the
sequence

x1(tk+1) = G̃1 (x1(tk), x2(tk), tk, tk+1)
and, similarly, the simulator 2 computes for some G̃2 : �m x �n x � → �m the sequence
x2(tk+1) = G̃2 (x2(tk+1), x1(tk+1), tk+1)
with initial condition x1(0) = x1,0. G̃1 and G̃2 are the functions that compute the value

of the variables at the new time step.
To advance from time tk to tk+1, each system uses its own time integration algorithm.

At the end of the time step, EnergyPlus sends the new value x1(tk+1) to the FMU and it
receives the value x2(tk+1) from the FMU. The same procedure is done with the FMU.

1.4.4 Requirements
The current implementation for linking EnergyPlus with the FMUs has the following re-
quirements:

• The data exchange between EnergyPlus and the FMUs is done at the zone time step
of EnergyPlus.

• Each FMU is linked to EnergyPlus only through a differential variable in EnergyPlus
(see Figure 1.7 for one FMU).

• Two or multiple FMUs are linked together only through differential variables in Ener-
gyPlus (see Figure 1.8 for two FMUs).

1.5. FMU EXAMPLES 21

Figure 1.7: System with one FMU linked to EnergyPlus.

Figure 1.8: System with two FMUs linked to EnergyPlus.

1.5 FMU Examples
1.5.1 Architecture of the FMU for co-simulation Import
Figure 1.9 shows the architecture of the connection between EnergyPlus and two FMUs.
EnergyPlus imports the FMUs that connect to its external interface. These FMUs are
generated by external simulation environments that implement the FMI Application Pro-
gramming Interface (API) for co-simulation. See http://www.modelisar.com/tools.html for
a list of programs that export FMUs. In the external interface, the input/output signals
that are exchanged between the FMUs and EnergyPlus are mapped to EnergyPlus objects.
The subject of this External Interface Application Guide is how to configure this mapping
and how to use these objects.

The external interface can map to three EnergyPlus input objects called

• ExternalInterface:FunctionalMockupUnitImport:To:Schedule

• ExternalInterface:FunctionalMockupUnitImport:To:Actuator

• ExternalInterface:FunctionalMockupUnitImport:To:Variable.

The ExternalInterface:FunctionalMockupUnitImport:To:Schedule can be used to over-
write schedules, and the other two objects can be used in place of Energy Management Sys-
tem (EMS) actuators and EMS variables. The objects have similar functionality as the ob-

http://www.modelisar.com/tools.html

22 CHAPTER 1. EXTERNAL INTERFACE(S)

Figure 1.9: Architecture of the FMU for co-simulation import.

jects Schedule:Compact, EnergyManagementSystem:Actuator and EnergyManagementSys-
tem:GlobalVariable, except that their numerical value is obtained from the external interface
at the beginning of each zone time step, and will remain constant during this zone time step.

The external interface also uses the ExternalInterface:FunctionalMockupUnitImport:From:Variable
object which maps to EnergyPlus objects Output:Variable and EnergyManagementSys-
tem:OutputVariable to send data from EnergyPlus to FMUs at each zone time step.

We will now present examples that use all of these objects. The following table shows
which EnergyPlus features are used in the examples.

Table 1.5: Overview of the EnergyPlus objects used in
Examples

Example 1 Example 2 Example 3

ExternalInterface:FunctionalMockupUnitImport:From:Variablex x x
ExternalInterface:FunctionalMockupUnitImport:To:Schedulex
ExternalInterface:FunctionalMockupUnitImport:To:Actuatorx
ExternalInterface:FunctionalMockupUnitImport:To:Variable x
Output:Variable x x x

Prior to discussing the examples, we will explain the pre-processing steps that are required
to prepare EnergyPlus to be linked to FMUs for co-simulation.

1.5.2 Workflow of the FMU for co-simulation import
To use the FMU for co-simulation import, there are two important steps: pre-processing
and co-simulation. The pre-processing step generates a section of an EnergyPlus input
file (*.idf) that can be used to configure the FMU for co-simulation import. The input file
defines the input and output variables for both EnergyPlus and FMUs. The co-simulation
step performs co-simulation.

Figure 1.10 shows the work flow for pre-processing. First, a FMU Parser parses the FMU
files (i.e. xxx.fmu) and generates a temporary EnergyPlus input file (i.e. xxxtmp.idf). The
temporary EnergyPlus input file is not complete as it just contains information related to
the FMU, such as names of the FMU and properties of each FMU variable including variable
name, associated FMU name, input/output type, data type, units and definitions. The user
will need to manually copy the FMU information from xxxtmp.idf into the EnergyPlus input
file xxx.idf. The user then needs to modify the xxx.idf file to link the FMU variables with
EnergyPlus variables.

1.5.3 FMU Parser
The FMU parser is a code written in C. It includes Expat (Expat XML Parser, 2011) which
is a XML parser library written in C. The low level implementation of the function (parser)
that is used to process a FMU is parser [options] xxx.fmu, where options are as follows:

1.5. FMU EXAMPLES 23

Figure 1.10: Work flow for pre-processing.

• –printidf, prints a temporary xxxtmp.idf with FMU information to be printed,

• –unpack, unpacks a FMU to be unpacked, and

• –delete, deletes temporary files related to FMUs.

A FMU is a zip file which may contain executable programs for specific platforms, de-
scription files and source code. In the pre-processing step, the FMU Parser will be called
with the command option –printidf. This will cause the parser to parse the XML file with
the model description of the FMU and write the FMU information in a format of the En-
ergyPlus input file (*.idf). The parser will check if all the required fields from FMU (see
next section for details) in the *.idf file are correctly specified. If the check succeeds, the
parser will successfully close. If the check fails, the parser will close with an error message.
After the EnergyPlus executable (such as EnergyPlus.exe) terminates, the EnergyPlus batch
file will delete all the temporary files that may have been generated. The FMU Parser is
distributed with EnergyPlus and can be found in the PreProcess folder (FMUParser) of the
EnergyPlus installation.

1.5.4 Example 1: Interface using ExternalInterface:FunctionalMockupUnitImport:To:Schedule
In this example, an HVAC system implemented in a FMU (MoistAir.fmu) is linked to a room
model in EnergyPlus. The HVAC system computes sensible and latent heat gain required
for maintaining a set point temperature. The FMU needs as input the outdoor dry-bulb
(TDryBul) temperature, outdoor air relative humidity (outRelHum), the room dry-bulb

24 CHAPTER 1. EXTERNAL INTERFACE(S)

Figure 1.11: Workflow of FMU parser for pre-processing.

1.5. FMU EXAMPLES 25

temperature (TRooMea) and the room air relative humidity (rooRelHum). The outputs
of the FMU are the latent (QLatent) and sensible (QSensible) heat transported across the
thermodynamic boundary of air inlet and outlet of the thermal zone.

To link the FMU with EnergyPlus, we need to send from the FMU to Energy-
Plus two schedule values for the latent and sensible heat gain and from EnergyPlus
to the FMU four output variables for outdoor dry-bulb temperature, outdoor air rel-
ative humidity, room dry-bulb temperature and room air relative humidity at each
zone time step. This can be accomplished by using two objects of type ExternalInter-
face:FunctionalMockupUnitImport:To:Schedule and four objects of type ExternalInter-
face:FunctionalMockupUnitImport:From:Variable.

To interface EnergyPlus, the following four items are needed:

• An object that instructs EnergyPlus to activate the external interface.

• An object that specifies the FMU and its instances.

• EnergyPlus objects that read data from EnergyPlus and send to FMU.

• EnergyPlus objects that read data from FMU and send to EnergyPlus.

1.5.4.1 Creating the EnergyPlus idf file

To create the EnergyPlus idf file the user should:

• Use the parser to generate a temporary idf.

• Copy the FMU information from the temporary idf into the full idf file.

• Modify the full idf file to link the FMU variables with EnergyPlus variables.

The code below shows how the objects will be in the idf.
To activate the external interface, we use:

ExternalInterface, !- Object to activate the external interface
FunctionalMockupUnitImport; !- Name of external interface

To define the FMU that will be linked to EnergyPlus, we use:

ExternalInterface:FunctionalMockupUnitImport ,
MoistAir.fmu, !- FMU Filename
15, !- FMU Timeout
0; !- FMU LoggingOn

To enter output variables from which the external interface read and send to FMUs, we
use:

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
Environment, !- EnergyPlus Key Value
Site Outdoor Air Drybulb Temperature, !- EnergyPlus Variable Name
MoistAir.fmu, !- FMU Filename
Model1, !-FMU Model Name
TDryBul; !- FMU Model Variable Name

26 CHAPTER 1. EXTERNAL INTERFACE(S)

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
ZONE ONE, !- EnergyPlus Key Value
Zone Mean Air Temperature, !- EnergyPlus Variable Name
MoistAir.fmu, !- FMU Filename
Model1, !- FMU Model Name
TRooMea; !- FMU Model Variable Name

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
Environment, !- EnergyPlus Key Value
Site Outdoor Air Relative Humidity, !- EnergyPlus Variable Name
MoistAir.fmu, !- FMU Filename
Model1, !- FMU Model Name
outRelHum; !- FMU Model Variable Name

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
ZONE ONE, !- EnergyPlus Key Value
Zone Air Relative Humidity, !- EnergyPlus Variable Name
MoistAir.fmu, !- FMU Filename
Model1, !- FMU Model Name
rooRelHum; !- FMU Model Variable Name

These output variables need to be specified in the idf file:

Output:Variable,
Environment, !- Key Value
Site Outdoor Air Drybulb Temperature, !- Variable Name
TimeStep; !- Reporting Frequency

Output:Variable,
ZONE ONE, !- Key Value
Zone Mean Air Temperature, !- Variable Name
TimeStep; !- Reporting Frequency

Output:Variable,
Environment, !- Key Value
Site Outdoor Air Relative Humidity, !- Variable Name
TimeStep; !- Reporting Frequency

Output:Variable,
ZONE ONE, !- Key Value
Zone Air Relative Humidity, !- Variable Name
TimeStep; !- Reporting Frequency

To enter schedules to which the external interface writes, we use:

ExternalInterface:FunctionalMockupUnitImport:To:Schedule,
FMU_OthEquSen_ZoneOne , !- EnergyPlus Variable Name
Any Number, !- Schedule Type Limits Names
MoistAir.fmu, !- FMU Filename
Model1, !- FMU Model Name
QSensible, !- FMU Model Variable Name
0; !- Initial Value

ExternalInterface:FunctionalMockupUnitImport:To:Schedule,
FMU_OthEquLat_ZoneOne , !- EnergyPlus Variable Name
Any Number, !- Schedule Type Limits Names
MoistAir.fmu, !- FMU Filename
Model1, !- FMU Model Name

1.5. FMU EXAMPLES 27

QLatent, !- FMU Model Variable Name
0; !- Initial Value

This completes the configuration that is required to simulate EnergyPlus with the FMU.

1.5.5 Example 2: Interface using ExternalInterface:FunctionalMockupUnitImport:To:Actuator
In this example, a shading controller with a finite state machine is implemented in a FMU
(ShadingController.fmu). Inputs of the FMU are the outside temperature (TRoo) and the
solar irradiation (ISolExt) that is incident on the window. The output of the FMU is
the shading actuation signal (yShade).This example describes how to set up EnergyPlus to
exchange data between the FMU and EnergyPlus, using an Energy Management System
(EMS) actuator.

To interface EnergyPlus using the EMS feature, the following four items are needed:

• An object that instructs EnergyPlus to activate the external interface.

• An object that specifies the FMU and its instances.

• EnergyPlus objects that read data from EnergyPlus and send to FMU.

• EnergyPlus objects that read data from FMU and send to EnergyPlus.

1.5.5.1 Creating the EnergyPlus idf file

To create the EnergyPlus idf file the user should:

• Use the parser to generate a temporary idf.

• Copy the FMU information from the temporary idf into the full idf file.

• Modify the full idf file to link the FMU variables with EnergyPlus variables

The code below shows how the objects will be in the idf.
To activate the external interface, we use:

ExternalInterface, !- Object to activate the external interface
FunctionalMockupUnitImport; !- Name of external interface

To define the FMU that will be linked to EnergyPlus, we use:

ExternalInterface:FunctionalMockupUnitImport ,
ShadingController.fmu, !- FMU Filename
15, !- FMU Timeout in milli-seconds
0; !- FMU LoggingOn

To enter the two output variables from which the external interface read from and send
to FMUs, we use:

28 CHAPTER 1. EXTERNAL INTERFACE(S)

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
Zn001:Wall001:Win001, !- EnergyPlus Key Value
Surface Outside Face Incident Solar Radiation Rate per Area,
ShadingController.fmu, !- FMU Filename
Model1, !- FMU Model Name

ISolExt; !- FMU Model Variable Name

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
WEST ZONE, !- EnergyPlus Key Value
Zone Mean Air Temperature, !- EnergyPlus Variable Name
ShadingController.fmu, !- FMU Filename
Model1, !- FMU Model Name
TRoo; !- FMU Model Variable Name

These output variables need to be specified in the idf file:

Output:Variable,
Zn001:Wall001:Win001, !- Key Value
Surface Outside Face Incident Solar Radiation Rate per Area, !- Var Name
TimeStep; !- Reporting Frequency

Output:Variable,
WEST ZONE, !- Key Value
Zone Mean Air Temperature, !- Variable Name
TimeStep; !- Reporting Frequency

To enter the actuator that changes the control status of the window with name
“Zn001:Wall001:Win001”, we use:

ExternalInterface:FunctionalMockupUnitImport:To:Actuator,
Zn001_Wall001_Win001_Shading_Deploy_Status , !- EnergyPlus Variable Name

Zn001:Wall001:Win001, !- Actuated Component Unique Name
Window Shading Control, !- Actuated Component Type
Control Status, !- Actuated Component Control Type
ShadingController.fmu, !- FMU Filename
Model1, !- FMU Model Name
yShade, !- FMU Model Variable Name
6; !- Initial Value

This completes the configuration that is required to simulate EnergyPlus with the
FMU.

1.5.6 Example 3: Interface using ExternalInterface:FunctionalMockupUnitImport:To:Variable
This example implements the same controller as the Example 2. However, the interface
with EnergyPlus is done using an external interface variable instead of an external interface
actuator. Inputs of the FMU are the outside temperature (TRoo) and the solar irradiation
(ISolExt) that is incident on the window. The output of the FMU is the shading actuation
signal (yShade).

To interface EnergyPlus using an external interface variable, the following items are
needed:

• An object that instructs EnergyPlus to activate the external interface.

• An object that specifies the FMU and its instances.

1.5. FMU EXAMPLES 29

• EnergyPlus objects that read data from EnergyPlus and send to FMU.

• EnergyPlus objects that read data from FMU and send to EnergyPlus.

1.5.6.1 Creating the EnergyPlus idf file

To create the EnergyPlus idf file the user should:

• Use the parser to generate a temporary idf.

• Copy the FMU information from the temporary idf into the full idf file.

• Modify the full idf file to link the FMU variables with EnergyPlus

The code below shows how the objects will be in the idf.
To activate the external interface, we use:

ExternalInterface, !- Object to activate the external interface
FunctionalMockupUnitImport; !- Name of external interface

To define the FMU that will be linked to EnergyPlus, we use:

ExternalInterface:FunctionalMockupUnitImport ,
ShadingController.fmu, !- FMU Filename
15, !- FMU Timeout in milli-seconds
0; !- FMU LoggingOn

To enter the two output variables from which the external interface read from and send
to FMUs, we use:

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
Zn001:Wall001:Win001, !- EnergyPlus Key Value
Surface Outside Face Incident Solar Radiation Rate per Area,
ShadingController.fmu, !- FMU Filename
Model1, !- FMU Model Name

ISolExt; !- FMU Model Variable Name

ExternalInterface:FunctionalMockupUnitImport:From:Variable,
WEST ZONE, !- EnergyPlus Key Value
Zone Mean Air Temperature, !- EnergyPlus Variable Name
ShadingController.fmu, !- FMU Filename
Model1, !- FMU Model Name
TRoo; !- FMU Model Variable Name

These output variables need to be specified in the idf file:

Output:Variable,
Zn001:Wall001:Win001, !- Key Value
Surface Outside Face Incident Solar Radiation Rate per Area, !- Var Name
TimeStep; !- Reporting Frequency

Output:Variable,
WEST ZONE, !- Key Value
Zone Mean Air Temperature, !- Variable Name
TimeStep; !- Reporting Frequency

30 CHAPTER 1. EXTERNAL INTERFACE(S)

To write data from the external interface to an EnergyPlus EMS variable, we use the
following item in idf file:

ExternalInterface:FunctionalMockupUnitImport:To:Variable,
Shade_Signal, !- EnergyPlus Variable Name
ShadingController.fmu, !- FMU Filename
Model1, !- FMU Model Name
yShade, !- FMU Model Variable Name
1; !- Initial Value

which declares a variable with name yShade that can be used in an Erl program to
actuate the shading control of the window “Zn001:Wall001:Win001” as follows:

! EMS program. The first assignments sets the shading status and converts it into the
! EnergyPlus signal (i.e., replace 1 by 6).
! The second assignment sets yShade to
! an EnergyManagementSystem:OutputVariable
! which will be read by the external interface.

EnergyManagementSystem:Program,
Set_Shade_Control_State , !- Name
Set Shade_Signal = 6*yShade, !- Program Line 1
Set Shade_Signal_01 = yShade+0.1; !- Program Line 2

! Declare an actuator to which the EnergyManagementSystem:Program will write
EnergyManagementSystem:Actuator,

Shade_Signal, !- Name
Zn001:Wall001:Win001, !- Actuated Component Unique Name
Window Shading Control, !- Actuated Component Type
Control Status; !- Actuated Component Control Type

! Declare a global variable to which the EnergyManagementSystem:Program will write
EnergyManagementSystem:GlobalVariable,

Shade_Signal_01; !- Name of Erl variable

This completes the configuration that is required to simulate EnergyPlus with the FMU.

1.6 Exporting EnergyPlus as a Functional Mock-up
Unit for co-simulation

The FMU export of EnergyPlus allows EnergyPlus to be accessed from other simulation
environments, as a FMU for co-simulation.

FMUs are formally specified in the Functional Mock-up Interface (FMI) standard, an
open standard designed to enable links between disparate simulation programs. The standard
is available from http://www.functional-mockup-interface.org/.

To export EnergyPlus as a FMU for co-simulation, the Lawrence Berkeley National
Laboratory has developed a utility which exports EnergyPlus as a FMU for co-simulation.
This utility is freely available from http://SimulationResearch.lbl.gov.

http://www.functional-mockup-interface.org/.%20
http://SimulationResearch.lbl.gov

Chapter 2

References

Hensen, Jan L. M. 1999. “A comparison of coupled and de-coupled solutions for temperature
and air flow in a building.” ASHRAE Transactions 105 (2): 962–969.

Zhai, Zhiqiang John, and Qingyan Yan Chen. 2005. “Performance of coupled building
energy and CFD simulations.” Energy and Buildings 37 (4): 333–344.

BCVTB Documentation. 2011. Online available at: http://simulationresearch.lbl.gov/
bcvtb/releases/1.0.0/doc/manual/index.xhtml [last accessed: 06/13/2011].

Expat XML Parser. 2011. http://sourceforge.net/projects/expat/ [Last accessed:
06/20/2011].

G. Fábián, D.A. van Beek, J.E. Rooda. 2008. Substitute equations for index reduction
and discontinuity handling. In Proc. of the Third International Symposium on Mathemat-
ical Modeling, Vienna, Austria.

Modelisar. 2010. “Functional Mock-up Interface for Co-Simulation.” http://www.modelisar.com/specifications/FMI_for_CoSimulation_v1.0.pdf
[Last accessed: 06/06/2011].

31

http://simulationresearch.lbl.gov/bcvtb/releases/1.0.0/doc/manual/index.xhtml
http://simulationresearch.lbl.gov/bcvtb/releases/1.0.0/doc/manual/index.xhtml
http://sourceforge.net/projects/expat/
http://www.modelisar.com/specifications/FMI_for_CoSimulation_v1.0.pdf

	External Interface(s)
	Introduction
	Coupling EnergyPlus with the Building Controls Virtual Test Bed
	Algorithm for data exchange

	BCVTB Examples
	Architecture of System
	XML Syntax
	Example 1: Interface using ExternalInterface:Schedule
	Example 2: Interface using ExternalInterface:Actuator
	Example 3: Interface using ExternalInterface:Variable

	Coupling EnergyPlus with Functional Mock-up Units for co-simulation
	Data exchange between EnergyPlus and FMUs
	Case 1: Linking two systems through differential variables
	Case 2: Linking two systems through algebraic and differential variables
	Requirements

	FMU Examples
	Architecture of the FMU for co-simulation Import
	Workflow of the FMU for co-simulation import
	FMU Parser
	Example 1: Interface using ExternalInterface:FunctionalMockupUnitImport:To:Schedule
	Example 2: Interface using ExternalInterface:FunctionalMockupUnitImport:To:Actuator
	Example 3: Interface using ExternalInterface:FunctionalMockupUnitImport:To:Variable

	Exporting EnergyPlus as a Functional Mock-up Unit for co-simulation

	References

